
PAID ADVERTISEMENT

Industrializing Software Development
Total global demand for software will grow by an order of
magnitude over the next decade, driven by new forces in the global
economy like the growing role of software in social infrastructure,
by new application types like business integration and medical
informatics, and by new platform technologies like web services,
mobile devices and smart appliances. Without comparable
increases in productivity, total software development capacity
seems destined to fall far short of total demand by the end of
the decade. What will change to provide the massive increase in
capacity required to meet demand? It is not likely to come from
adding developers. Instead, software development methods and
practices will have to change dramatically to make developers
much more productive.

Other industries multiplied their capacity by moving from
craftsmanship, where whole products are created from scratch
by individuals or small teams, to manufacturing, where a wide
range of product variants is rapidly assembled from reusable
components created by multiple suppliers, and where machines
automate rote or menial tasks. They standardized processes,
designs and packaging, using product lines to facilitate systematic
reuse, and supply chains to distribute cost and risk.

What will industrialization look like in the software industry? We
cannot know with certainty until it happens, of course, but we can
make educated guesses based on the way the software industry
has evolved, and on what industrialization looks like in other
industries. The key is to leverage experienced developers by
encapsulating their knowledge as reusable assets that others can
apply. Patterns demonstrate limited but effective knowledge reuse.
The next step is to move from documentation to automation, using
languages, frameworks and tools to automate more of the
software life cycle.

Automating Software Development
Can we automate software development? Of course, we
can, and we have already. Widget frameworks and WYSIWYG
editors, for example, make it easier to build and maintain
graphical user interfaces, providing benefits like device
independence and visual assembly. Database design offers
similar forms of automation. Looking closely at how this was
done, we can see a recurring pattern.

■After developing a number of systems in a given problem
domain, we identify a set of reusable abstractions for that
domain, and then we document a set of patterns for using
those abstractions.

■We then develop a run time, such as a framework or server,
to codify the abstractions and patterns. This lets us build
systems in the domain by instantiating, adapting,
configuring and assembling runtime components.

■We then define a language for the domain and build tools
that support the language, such as editors, compilers and
debuggers, to automate the assembly process. This helps
us respond faster to changing requirements, since part
of the implementation is generated, and can be
easily changed.

The Role of Models
Raising the level of abstraction for developers using higher level
languages, such as modeling or visual assembly languages, is
one of the key elements of this pattern. We are using UML for
documentation, but we are using models based on small, focused,
domain specific languages (DSLs) for automation. DSL based
tools can help developers define and assemble components, such
as web services, generate their implementations using framework
completion, and capture metadata used to automate validation,
packaging, deployment, configuration management, test
generation, defect tracking and many other aspects of the
software life cycle. We are using high fidelity DSL based models
as first class software development artifacts.

Is that Model Driven Architecture (MDA)? No, not quite. Like MDA,
we are interested in models. However, we are less concerned with
portability and platform independence than MDA, and more
concerned with productivity. While stereotypes and tags can be
used to decorate UML models, experience shows that more
precise language features are required to support compilation,
debugging, testing and other development tasks. Unlike MDA, we
do not propose to use UML where programmatic manipulation of
models is a key requirement. We use UML for discussion,
sketching diagrams on whiteboards and napkins, using the UML
static structure and sequence chart notations that are now almost
universally recognized by developers.

Not Just Models
While models play an important role, they are not the whole
solution. Scaling up to higher levels of productivity will require
the ability to rapidly configure, adapt and assemble independently
developed, self-describing, location independent components to
produce families of similar but distinct systems. It will require a
transition from craftsmanship to manufacturing like the ones we
have seen in other industries, and it will eventually produce more
advanced earmarks of industrialization, such as supply chains,
value chain integration, and mass customization. This vision
cannot be achieved with models alone. Domain specific patterns,
frameworks, and tools must also be developed and applied
systematically, and must be aligned with both the product
architecture and the life cycle process.

Also, we must address the processes by which we analyze
requirements, develop software and deploy it to our datacenters.
While prescriptive methods optimize for complexity not change,
modern agile methods optimize for change not complexity. To
scale agile methods requires the ready availability of best
practices, reusable content and patterns. To ensure prescriptive
methods are not overly rigid requires flexibility and variability in
their description.

We are using a methodology, based on these ideas, called
software factories.

Software Factories
A software factory is a product line that configures extensible
development tools like Microsoft Visual Studio Team System
(VSTS) with packaged content and guidance, carefully designed
for building specific kinds of applications. A software factory

Moving to Software Factories
Jack Greenfield and Keith Short, Architects, Visual Studio Team System, Microsoft Corporation.

contains three key ideas: a software factory schema, a software
factory template and an extensible development environment:

■Think of the software factory schema as a recipe. It lists
ingredients, like projects, source code directories, SQL files and
configuration files, and explains how they should be combined to
create the product. It specifies which DSLs should be used and
describes how models based on these DSLs can be transformed
into code and other artifacts, or into other models. It describes
the product line architecture, and key relationships between
components and frameworks of which it is comprised.

■The software factory template is like a bag of groceries
containing the ingredients listed in the recipe. It provides the
patterns, guidance, templates, frameworks, samples, custom
tools such as DSL visual editing tools, scripts, XSDs, style
sheets, and other ingredients used to build the product.

■An extensible development environment such as VSTS is like
the kitchen where the meal is cooked. When configured with the
software factory template, VSTS becomes a software factory for
the product family.

To press this analogy further, the products are like meals served
by a restaurant. Software factory stakeholders are like customers
who order meals from the menu. A product specification is like a
specific meal order. The product developers are like cooks who
prepare the meals described by the orders, and who may modify
meal definitions, or prepare meals outside the menu. The product
line developers are like chefs who decide what will appear on the
menu, and what ingredients, processes, and kitchen equipment
will be used to prepare them.

An Example
For example, we might design a software factory schema for
building thin client eCommerce applications using the Microsoft
.NET Framework, C#, the Microsoft Business Framework (MBF),
Microsoft SQL Server Yukon, Microsoft BizTalk Server and the
Microsoft Host Integration Server – a broad but useful family of
applications. We might use this software factory schema to
configure VSTS to become a software factory to build members
of this family.

The software schema might contain a DSL to represent
configurable requirements (perhaps using feature models), a DSL
for describing business processes, a DSL for describing logical
and physical data models, a DSL to describe Web page navigation,
a DSL to describe interactions between Web services, a DSL to
describe logical deployment policies, and a DSL to describe
business entities. These DSLs have transformations and
constraints defined between them, such as rules which describe
how Web services map to source code structures in ASP.NET, or
rules by which the mapping from Web services to business
process activities should be reconciled. Architectural features of
the family, such as 3-layer detailing for service implementations
would also be specified. The software factory schema also
describes the common features of products in the family, and
specifies the variations permitted, and the effects of configuring
variable features on the architectural elements of the family.

We would use the extensibility features of VSTS to host a software
factory template based on this software factory schema. Included
in the software factory template would be content from Microsoft
Patterns and Practices group such as the User Interface Block for

building navigable user interface flows and other software
frameworks; Team Foundation Server policies for check-ins, project
structures and work item descriptions and workflows; Visual
Studio Enterprise templates that define policies for project
structures; Microsoft Solutions Framework (MSF) micro-processes
and guidance; custom extensions to Visual Studio Team Architect
tools for special web service contracts and custom datacenter
deployment configurations suitable for hosting large-scale
eCommerce applications.

Equipped with this software factory, a development team could
rapidly punch out a variety of eCommerce applications, each
containing unique features based on the unique requirements
of specific customers. The team would configure the architecture,
software components and frameworks using configuration
mechanisms for the variable features described in the software
factory schema. Additionally, this factory could be used to create
an ecosystem by making it available to third parties, who could
extend it to rapidly build eCommerce applications incorporating
their value-added extensions.

Conclusion
We realize that the term software factory is controversial –
conjuring up for some visions of mindless automatons stamping
out applications with all creativity in the process removed, or
perhaps of previously unrealized visions of application
development without programmers. On the contrary, the key
to meeting demand on an industrial scale is to stop wasting the
talents of skilled developers on rote and menial tasks. We
must make better use of these few but valuable resources than
expending them on the construction of end products that will
require replacement when the next major platform release
appears, or when changing market conditions make business
requirements change, which ever comes first. We need a way to
leverage their skills and talents by asking them to encapsulate
their knowledge as reusable assets that others can apply.

Software factories are possible today. They represent an attempt
to learn from other industries facing similar problems, and apply
select patterns of automation to existing manual development
tasks. Software factories exploit recent advances in software
product line practices, component specification and orchestration
techniques, domain specific higher level languages and extensible
development environments like VSTS. Software factories make it
faster, cheaper and easier to build applications – even for
applications that are not initially perceived as being part of a
family. Remember, ongoing maintenance of an application is akin
to producing successive applications in a family. Instead of having
to build a whole application from scratch, developers using a
software factory build only the parts where the application differs
from other members of the family. The rest is provided by the
software factory.

For further information, please see the book we have written
called Software Factories: Assembling Applications using Patterns,
Models, Frameworks and Tools, published by John Wiley, and
check out other references available from
http://msdn.microsoft.com/architecture/overview/softwarefac
tories.

For further information on Visual Studio Team System, see
http://msdn.microsoft.com/vstudio/teamsystem.

